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The capture rates of negative pions in He4 into the three modes t-\-n, d-\-2n, and p-\-3n are calculated 
phenomenologically, using a two-nucleon capture model. The amplitudes which appear in the phenomeno-
logical interaction are evaluated by a comparison with the pion production cross sections; and the capture 
rates are compared with experiment. The calculated ratio of the triton mode to all captures within the 
energy range observed by Schiff, Hildebrand, and Giese is 30%, which is in good agreement with the experi­
mental ratio of 1/3. 

1. INTRODUCTION 

RECENTLY an experimental study of the capture 
of negative pions by helium was made by Schiff, 

Hildebrand, and Giese1 which was in striking disagree­
ment with an earlier work by Ammiraju and Lederman.2 

The reactions involved are 

(a) 7r-+He4->H-w, 

(b) 7r-+He4->J+2w, 
(c) 7r-+He4->£+3/*, 

(1.1) 

where t, d, and p are tritons, deuterons, and protons 
Schiff, Hildebrand, and Giese, who studied the reactions 
in a hydrogen bubble chamber containing dissolved 
helium, found that the triton mode (1.1a) occurred in 
about 1/3 of all events whose prong ranges were be­
tween 5 and 110 mm (corresponding to proton energies 
of 7.2-38 MeV and deuteron energies of 9.9-53 MeV); 
whereas Ammiraju and Lederman, who reported a total 
of 60 events in a helium-filled diffusion cloud chamber, 
found that this mode occurred at most once among their 
events. Ammiraju and Lederman inferred that their 
result was in qualitative agreement with the two-nucleon 
capture model originally introduced by Brueckner, 
Serber, and Watson,3 which assumes that the mechanism 
for pion capture is 

TT+N+N-*N+N. (1.2) 

In a later theoretical paper, Ammiraju and Biswas4 

argue that the triton mode is very unlikely as a result of 
the two-nucleon capture model. In earlier quantitative 
calculations, based on a one-nucleon capture model, 
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Petschek5 predicted that it should occur in 22% of all 
events; and Clark and Ruddlesden6 predicted a ratio of 
3%. This difference in their results is mainly due to the 
fact that Petschek used a He4 wave function of average 
kinetic energy 130 MeV, whereas the wave function 
used by Clark and Ruddlesden had an average kinetic 
energy of only 48 MeV; as a consequence, the He4 wave 
function of Petschek is much larger at the kinetic 
energies of the triton mode. Indeed, substitution of the 
Clark and Ruddlesden wave function in Petschek's 
calculation resulted in a triton mode ratio of only 2%. 
However, these earlier calculations should perhaps not 
be taken too seriously, since the two-nucleon capture 
model has been quite well verified experimentally.7 

Because of these experimental and theoretical incon­
sistencies, it was felt that a calculation of the capture 
rate of negative pions in He4, using the two-nucleon 
capture model, would be of interest. In addition, the 
simplicity of the He4 nucleus makes a quite complete 
analysis possible, and thus it affords an attractive 
opportunity to check the validity of the two-nucleon 
capture model. 

In Sec. 2, a discussion of the phenomenological scat­
tering matrix is given. The details of the calculations of 
the capture rates are found in Sec. 3; and in Sec. 4, re­
sults, comparison with experiment, and a discussion of 
the approximations used are given. 

2. THE MATRIX ELEMENT FOR PION CAPTURE 

The pion capture rates in helium were calculated 
phenomenologically.8 The effective Hamiltonian has the 

6 A. G. Petschek, Phys. Rev. 90, 959 (1953). 
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Kulyukin, R. M. Sulyaev, A. I. Filippov, and Yu. A. Scherbakov, 
J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 409 (1960) [translation: 
Soviet Phys.—JETP 11, 300 (I960)]; N. I. Petrov, V. G. Ivanov 
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Phys. Rev. 92, 974 (1953); H. Byfield, J. Kessler, and L. M. 
Lederman, ibid. 86, 17 (1952). 
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413 



414 S . G . E C K S T E I N 

form 

3Ceff= d*X1(Px2[}l/NK%l)tNKx2)™+N(x1)xlsN(X2)~], ( 2 .1 ) 

where ^j\r(#) is the nucleon operator 

M*) = ( , J . (2-2) 

Assuming that the pions are captured from 5 states 
only,9 and using a zero-range approximation, the most 
general form of 2flT will be 

9n:=E±Iio±J(^i-^)-*i(^i+^2)-kj(i±i> i2T) 
+gi±i(>i+'C2)-#i(o,i— o-2)-k 

Xi ( l±^V)]5(x i -x 2 ) , (2.3) 

where ^ = ^ (#1) is the pion operator; TI and *2 the isotopic 
spin operators of the two nucleons; o-i and o-2 the spin 
operators of the two nucleons; k = — ̂ ( V ^ — V N 2 ) is 

The first term in the curly brackets of (2.5) induces 
the reaction T~~+p+n—> n+n. If the initial nucleon 
state is ^So, the only available final state of correct 
parity is 3Po, and if the initial state is 3S\, the final state 
is 3Pi. I t may be noted that g0~ is the amplitude for the 
transition 7 = 0—»1=1, *Si —>zPi; and gr the ampli­
tude for 7 = 1 —» 7 = 1, ^o—> 3Po- Similarly, the second 
term in (2.5) induces the reaction T~+p+p —•» n+p. 
Because of the exclusion principle, the only initial S 
state is ^ 0 , and the final state available is 3Po. As a 
result of charge independence, the amplitude for this 
transition is also gf~. 

The evaluation of the matrix element (/|3C©ff|t) is 
carried out using a relationship given by Fock.10 Con-

where 0»(£i,52; £3, £4) is the He4 wave function of two 
protons with coordinates £1, £2, and'two neutrons with 
coordinates £3, £4; <t>f(%i', h,Zz&) is the final-state wave 

The function H, defined by Wolfenstein, is identical with 
-(2)"1/2go-. 

9 The rate of pion capture from p states is only a few percent of 
that from s states. See G. A. Snow, Proceedings of the 1960 Annual 

the relative momentum of the two final-state nucleons; 
Pi2T=h{l~*r*i"Z'i) and P\za=\{l+v\' at) are operators 
which exchange the isospin and spin of the two nucleons; 
and go±, gi± depend only on the magnitude of k; how­
ever, in the following, this k dependence will be assumed 
to be negligible, and go±, gi± will be treated as constants. 

In the helium nucleus, which is the initial state under 
consideration, all of the nucleons are in s states, so that 
each pair of nucleons is in a spatially symmetric state. 
Therefore, the spin and isospin part of their wave func­
tion is antisymmetric, so that i(o ,i+<T2)-kJ(l+Pi2T) 
and J(T1+T2) • ^ | ( l+Pi2 f f ) contribute zero when acting 
on the initial state. Thus, the only terms which need be 
considered are (after a slight rearrangement) 

iCi+PwOiCi+^uOlio-iCtri+^-kKTi-^)-* 
+ g r K ^ i - c r 2 ) - k i ( T i + T 2 ) ^ ] ( x i - x 2 ) . (2.4) 

When the matrix multiplication of the isospin part of 
5Ceff is carried out explicitly, and only the terms relevant 
to negative pion capture are retained, (2.1) becomes 

sider the state vector | <£) of a system of N fermions 

XW(xN)\0)d3xr-d*xN. (2.6) 
I t follows that 

^(x)|$) = [ ^ / ( ^ - l ) ! ] ^ ( x , x r • .*„_!) 

X^t ( X l ) . • . ^ ( x ^ O I O ^ x i - • -dhiN-i. (2.7) 

Using (2.7) to evaluate the matrix element for pion 
capture in He4, it is found that 

function of one proton with coordinate ?i and 3 neu­
trons; and 0,r(xi) is the pion wave function relative to 

International Conference on High-Energy Physics at Rochester 
(Interscience Publishers, Inc., New York, 1960), p. 407; and also 
remarks bv Bethe in same reference. 

10 V. Fock, Z. Physik 75, 622 (1932); R. Becker and G. Liebfried, 
Phys. Rev. 69, 34 (1946). 

oCe -yJ2 d'x^XiSix!-X2)^>-{C-^'(Vx1-Vl2)'Ant(Xl)^»KX2)]i(l+-Pl2'r) 

•ko-i(»i+ff2)+grl(wi-^)>P(x1)^«(x2)+[-|*'(Vx,-Vx2¥3. t(xi)'/'n t(x2)]Ki+-Pi2 , r) 

•Iiri(wi-w*)]!M*i)iMx*)}. (2-5) 

tj^lffilv </|3Ceff|0= ( 6 / 0 1 / 2 / ffliidhuPWt, 8(xi-xO*r(xi){2C-i*(v,1-v„)*/*(«; xi,x»,i|)]i(l+P»') 

•[go_|(ffi+ff2)+grKffi-«r2)>i(?,x1;x2,ij)+[-^'(Vx1-VxI)*/*(xi;x2^,ij)]Kl+-Pi2'') 

•[>ri On-<*!)>; (xi,x2; i,ti)}, (2.8) 
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the center of mass of the He4 nucleus. The spin indices 
have been suppressed throughout, but the notation is 
obvious: 07 refers to the nucleon whose coordinate is xy. 

The He4 wave function may be written as a product of 
a spatial and spin wave function. Since both the neutron 
pair and the proton pair are in singlet states 

4>i(l,2; 3,4) = 0i(x1)x2!x3,X4)xo(l,2)x°(3,4), (2.9) 

where x° is a singlet spin wave function and <t>i(xi- • • X4) 
is symmetric in all four variables. 

The final-state wave function is antisymmetric in all 
three neutron variables. Therefore 0 / ( 1 ; 2,3,4) may be 

where (jkf) is a cyclic permutation of (234). 
As a result of the exclusion principle, which was used 

in the antisymmetrization of the final-state neutrons, 
the matrix element (2.11) contains terms corresponding 
to the capture of the pion by each pair of nucleons in the 
He4 nucleus. Therefore, even though g0~ and g{~ are 
amplitudes for transitions of different total angular 
momentum in the "free" reaction w+N+N —» N+N, 
the capture rates will contain cross terms in go~*gi~ be­
cause of interference between capture by different sets 
of pairs. Part of these cross terms would appear even in 
the absence of the exclusion principle, since they are due 
to interference between capture by a p—p pair and an 
n—p pair. Additional cross terms will appear in the 
triton and deuteron modes, because in these modes the 
final spin state is partially correlated, so that not all 
possible states contribute in the summation over final 
spin states. 

3. CALCULATIONS OF CAPTURE RATES 

A. The Mode t+n 

The wave functions of the He4 and H3 nuclei were 
chosen so as to lead to the nucleon distributions 
measured by the Stanford electron scattering experi­
ments. I t was found that the nucleon distribution in the 
He4 nucleus is well fitted by a Gaussian shape of rms 
radius R=R*= 1.44±0.07 F.11 Therefore, the He4 wave 
function was chosen to be 

0<(xi,X2,x8,x4) = iVa e x p [ - § \ E (x<—x^)2], (3.1) 

where A — 9/(32R£) and Na is a normalization constant: 

» R. Hofstadter, Revs. Mod. Phys. 28, 214 (1956). 

written 

0 , ( 1 ; 2,3,4) = ( 6 ) - " £ ( - ) * • 

XPrF(a?i; *2,*8,*<)x(l; 2,3,4), (2.10) 

where Pv is one of the six permutation operators of (234) 
and (—)p" is the sign of the permutation. 

After substituting (2.9) and (2.10) in (2.8) and using 
the symmetry of <£*(xr • -x4), the expression for the 
matrix element simplifies to 

NJ— F ^ ^ X 3 / ^ ) 8 7 2 , and where V is the normalization 
volume. 

Similarly, electron scattering data on He3 show that 
the nucleon distribution of the nucleus is well fitted by a 
Gaussian shape of rms radius R=R&=1.65zk0.12 F.12 

Assuming that the nucleon distribution in H3 is the 
same as that in He3, the H3 wave function was chosen 
to be 

fc(xi,x2,x8) = #« e x p [ - j X ' £ (x.-x,-)2], (3.2) 
i<3 

where X' = (3ft2)-1 and Nt
2= F-1(3X / 2 /TT2)3 / 2 . 

The wave function for the state t+n is given by 
(2.10) where we use (3.2) for the triton wave function 
and a plane wave state for the neutron 

F'ixx', x2,x3,x4)= (2F)-1/V,(x i,x3,x4) 

Xexppq- | ( x i+X3+x 4 )+ ip -x 2 ] , 

x<(l;2,3,4) = x°(3,4)x(l,2) 
= i ( l - i V ) x ( l , 2 , 3 , 4 ) , 

where q is the triton momentum and p the neutron 
momentum; x°(3,4) is a singlet spin function; and 
%(1,2) and x(l,2,3,4) are arbitrary spin functions. 

The wave function used for the pion was that of an 
5-state Bohr orbit of He4. Since the variation of this 
wave function over the dimensions of the He4 nucleus is 
very small, it was replaced by its value at the origin. 

The capture rate into the mode t+n was then found 
by substitution of (3.3) into (2.11) and (2.12), and using 
the "golden rule," 

^ = 2 7 r E K / | 5 C e f f U ) | 2 5 ( E - £ / ) p / . (3.4) 
12 R. Hofstadter (private communication), 

(/|3CeffN)=2Xt(l,2,3,4)C(J4+P34 f fJ3+P2/J2)(l+P23')-{f0-|(ff2+<F3)+grl((r2-a3)} 

+ (K2-P 2 3 'K3-P2/K 4 ) -gr ! ( f f l -a 2 )3x 0 ( l ,2 )x 0 (3 ,4) , (2.11) 
where 

3j= (mv)~
m / d3xv • -d3X4 8(x*—x,)^(xjfc)[—^"(Vx»—Vxi)^*(xi; X2,x8)X4)>,-(xi,X2,X8,X4), 

Ky= (mT)-1/2 / dsxv • •rf^SCxi—xy)^T(xi)[-§i(Vx,—Vx,)P*(xi; x2,X3,X4)>i(xi,X2,X3,x4), 

(2.12) 
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FIG. 1. The functions Wi(q) which appear in the expression for 
the deuteron momentum spectrum (3.8). 

A discussion of the integrals involved in this calculation, 
as well as the integrals involved in the calculation of the 
capture rates of the other modes will be found in Ap­
pendix A. The result is that the capture rate into the 
mode t-\-n is 

Wt= I gfT+gr I WfflJVtWmr)-114>r(P) | n (6)1*** 

Xm(mAty
/2 exp[-mA*/3(2X+X')] 

x [(2x+V) (x+f xo]-3[i+ixy (2x+xo]2 

= 9.68 J g<r+gr 12X101 V- 3 sec-1, (3.5) 

where fyt is the nucleon mass, wT the pion mass, A$ 
= 118.1 MeV is the energy release in this reaction, n is 
effective radial quantum number of the Bohr orbit 
from which the pion is captured; and the gc are given 
i n F 4 . 

B. The Mode d+2n 

The wave function for the state d+2n was chosen as 
a product of plane waves for the free neutrons and a 
deuteron wave function. Thus, using (2.10), 

Fd(xu x2,x3,x4) 
= F - t y d ( | x i - x , | ) 

Xexppprx 2 +ip2-X4+iq-J (x i+x 3 ) ] , 

Xrf(l;2,3,4) = x1(l,3)x('2,4) = J ( l+^i8 ' )x( l ,2 ,3 ,4) , 

where q is the deuteron momentum, pi and p2 are the 
neutron momenta; x K M ) is the triplet spin function of 
the deuteron, and x(2,4) and x(1*2,3,4) are arbitrary 
spin functions. The deuteron spatial wave function, 
4>d(r) was chosen as13 

«d(r) = iV rdCexp(-0.232r)-exp(-1.202f)]/f, (3.7) 

where N a is a normalization constant, and r is given in 
fermis. 

The momentum spectrum of the deuteron is found by 
integrating the capture rate of this mode over the 

13 M. J. Moravcsik, Nucl. Phys. 7, 113 (1958). 

momenta pi and p2 only. The result is 

dWd(q) = dq [ ( | * o i ' 2 + 3 | g r | H - 2 RegQ-*gr)Wi 

+ (\g<r\2-\gr\2+2Rego-*gi-)W2 
+ \gfT\Wz+2 Reg<T*gi-Wd (3.8) 

where the Wj are functions of q, and are shown graphi­
cally in Fig. 1. The function W\ corresponds to captures 
in which one of the participating nucleons is bound in 
the deuteron; Wz corresponds to those captures in which 
the free neutrons are the participants; W* is a cross 
term in the sense that it is due to interference between 
those cases in which one participant is bound*in the 
deuteron, and the other participant is one or the other 
of the free neutrons—thus this term is entirely due to 
the antisymmetrization of the final state; similarly, W4 
is a cross term due to interference between the cases in 
which both free neutrons are participants and only one 
free neutron is a participant. I t should be noted that the 
factor 2 Reg<r*gi~ which multiplies W\ is due to the 
fact that the final spin state is correlated—i.e., the 
deuteron has spin 1. 

The total rate for capture into this mode is found by 
integrating over the deuteron spectrum. The result is 
that the total capture rate is 

^ = 2 7 . S [ 1 . 3 1 | g 0 - | 2 + | g r | 2 + 1 . 1 9 R e g o - * g r ] 
XlOutrz sec~\ (3.9) 

C. The Mode p+3n 

Up to this point we have not taken final-state 
interactions into account because, in the modes t+n and 
d+2n, the relative momenta of the final-state particles 
would seem to be sufficiently high so that the effect of 
final-state interactions would be negligible. However, 
the effect of final-state interactions is expected to be 
quite important in the mode p+Sn, because in this case 
there are two bystanders of low relative momentum, 
which should interact quite strongly. Since the partici­
pants have high momenta, it would appear logical to 
choose a final-state wave function which is a product of 
plane waves for the participants and an interaction 
wave function for the bystanders. However, use of such 
a wave function would be inconsistent with the correct 
antisymmetrization, since the bystanders and partici­
pants exchange roles under antisymmetrization. The 
only consistent way of taking final-state interactions 
into account would seem to be to take a final-state wave 
function of four mutually interacting particles. Since 
this is rather difficult to carry out, the matrix element 
was first calculated using a product of plane waves as 
the wave function; then the relative wave function of 
the bystanders in the matrix element was replaced by 
the correct interaction wave function. 

Thus, the matrix element was first calculated using 
the free-particle wave function 

^ (x i ; x 2 ,X3 ,x 4 ) :=F- 2 exp(*£ p r X i ) , (3.10) 
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where the pi are the momenta of the final-state nucleons. 
This wave function was substituted in the expression for 
the matrix element (2.11) and (2.12). Then, in the 
integral J/, for example, the bystanders are labeled by 
the indices (l,j). The function Fp(xi'} x2,x3,x4) may be 
rewritten as 

V-1 exp(ipK-Xk+iprxi) 
X V-1 exp[Ji(pi+py) • (xi+xy)] 

Xexp[ | i (p i -py) • (x i -xy)] . (3.11) 

The s-wave part of the relative wave function of the 
bystanders (which is the only part which contributes 
to the integral) is {pr)~l sinpr, where p=i(pi — Pi)? 
r = (xi—xy). This function is replaced by that inter­
action wave function fp(r) whose asymptotic form is 
{pr)~l sm(pr+8). The correct interaction wave func­
tions were found in the following way: The amplitude 
go~ describes capture from an 1 = 0 state. Therefore the 
bystanders are also in an 1 = 0 state, so that their 
configuration must be ZS\\ the corresponding fp(r) is the 
solution of the Schrodinger equation in a 35i potential. 
Similarly, the amplitude gr~ describes capture from an 
7 = 1 state, so that the bystanders will be in an 7 = 1, ^ o 
configuration, with a corresponding fp(r). These wave 
functions were found by solving the Schrodinger equa­
tion with square well potentials, whose parameters were 
chosen to agree with the scattering lengths and effective 
ranges known from nucleon-nucleon scattering.14 

The results of these calculations were as follows: The 
total capture rate for this mode in the absence of final 
state interactions was found to be 

Wp(iree particles) 

= 23.6[ | go-12+ | gr 12+0.605 RegrT*gi] 
X l O ^ - ^ s e c r 1 . (3.13) 

After making the above corrections for final-state 
interactions, the total capture rate was found to be 

Wp (interacting bystanders) 

= 23 .6[0 .19 |g 0 - : | 2 +1.20 |gr | 2 +0.29Rego-^ i - ] 
XlO^w-^sec-1. (3.14) 

Comparison of (3.13) with (3.14) shows that the *S\ well 
causes an 8 1 % reduction in the relevant term of the 
capture rate, whereas the x5o well causes a 20% en­
hancement. The reason for the large reduction of the zSi 
capture rate is that the state for which the bystanders 
are bound in a deuteron is implicitly included in the 
sum-over-states of the plane wave calculation, but does 
not, of course, appear in the final-state interaction 
calculation. 

Because of the approximation method used, it is 
difficult to evaluate the effect of the cross terms. How­
ever, a plausible order-of-magnitude estimate is ob-

14 M. J. Moravcsik, Ann. Rev. Nucl. Sci. 10, 324 (1960). The 
corresponding square-well potential parameters are: F s=14.3 
MeV, b8=2.56 F, F , = 36.5 MeV, ft« = 2.00 F, where V is the po­
tential depth and b the range of the potential. 

Momentum in MeV/c 
0 100 200 300 

Momentum in fermi 

FIG. 2. The functions Vi(p), V/(p) which appear in the ex­
pression for the proton momentum spectrum (3.16). V*(p) is the 
estimated function, as discussed in Appendix A. 

tained by multiplying the coefficient of RegQ~*gi~ in 
(3.13) by the square root of the product of the two 
correction factors for the direct terms. This leads to the 
cross term given in (3.14). 

The proton momentum spectrum is needed in order to 
be able to compare the ratios of the capture rates with 
experiment. However, since fP(r) is a function of the 
relative proton-neutron momentum, it is rather difficult 
to evaluate the absolute momentum spectrum of the 
proton accurately when final-state interactions are 
taken into account. Therefore, the spectrum was esti­
mated simply by normalizing the various terms in the 
momentum spectrum calculated without interactions in 
the final state in such a way that the total rate agreed 
with (3.14). 

When final-state interactions were neglected, the 
proton momentum spectrum was found to be 

dwp{p)=dp{\g,-\w1+l\gr\2 

+2Reg0-*sr[F1 '+lV]}, (3.15) 

where Vi and V/ are functions of the momentum p, and 
are shown graphically in Fig. 2. The function Vi 
corresponds to captures in which the participants are 
both neutrons; V2 corresponds to captures in which the 
final-state proton is a participant; Vi is the cross term 
due to interference between captures in which two 
different pairs of final-state neutrons are the partici­
pants ; V2 is the cross term due to interference between 
captures in which one of the participants is the final-
state proton and the other participant is a different 
neutron in each case; and Vzl is the cross term due to 
interference between captures in which the final-state 
proton is a participant and those in which it is a 
bystander. 

4. RESULTS AND DISCUSSIONS 

In Appendix B the absolute squares of the amplitudes 
go~ and g-r are determined by a comparison of the ex-
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perimental cross sections of the inverse reaction of pion 
production with the theoretical cross sections. I t is 
found that 

| 2 = 0 . 3 2 F 8 ; | g f i 2 = 0 . 2 9 F 8 ; 

Momentum in MeV/c 

100 200 300 400 

(4.1) 

28x10 

Momentum in fermi 

FIG. 3. Deuteron momentum spectrum. 

and within experimental accuracy these amplitudes are 
equal in absolute value. 

Under the assumption of time-reversal invariance, the 
phases of these amplitudes are identical with the 
nucleon-nucleon scattering phase shifts, i.e., 

go |expft5(lPi)]; 

|expp§(3P0)] , 
(4.2) 

where 5(3Pi) and 5(3Po) are the nucleon-nucleon phase 
shifts for cm. energy 140 MeV. These phase shifts have 
not been unambiguously determined, but their differ­
ence is known to be small (about 20°),u so that go~ and 
gi~ are, to a good approximation, relatively real. In 
order to determine the relative sign of the amplitudes, 
the total capture rates were calculated by substituting 
the values of 
and assuming that the difference in phase is either zero 
or 180°. For g<r and gr relatively positive, the capture 
rates are 

fl^ll.PXlO16^-3 sec- x =22% of total, 

IF d=29.7Xl0 1 6^- 3 sec-x = 56% of total, (4.3) 

Wp= 11.8X 1016»-« seer1 = 22% of total. 

For go~ and gf~ relatively negative, the results are 

Wt~0, 

Wd=9AX101&n-*sec-l=55% of total, (4.4) 

Wp=7.6X10unr3 s e c - 1 - 4 5 % of total. 

The experimental result of Scruff et al. is that the t+n 
mode occurs in about 1/3 of all captures in the energy 
range which they observed, so that it appears that (4.4) 

is inconsistent with experiment, and g0~ and g{~ are 
relatively positive; thus these amplitudes are equal 
within experimental accuracy. This is quite suggestive: 
Perhaps the nature of the pion-nucleon interaction is 
such that these amplitudes are required to be equal. In 
Appendix C it will be shown that, to the extent that the 
nucleon-nucleon interaction is due to the exchange of 
p-wdive pions, this is, indeed, the case. 

The deuteron and proton momenta spectra can now 
be found; they are given in Figs. 3 and 4. These spectra 
have double humps: the "slow" hump corresponds to 
captures in which the proton or deuteron is a bystander, 
and the "fast" hump corresponds to captures in which 
the proton or a nucleon bound in the deuteron is a 
participant. 

In order to compare the results of this paper directly 
with the experimental results of Schiff et al., the deu­
teron and proton spectra were integrated over the range 
of observed energies. Within these ranges, the calculated 
ratios of the three modes are as follows: 

t+n: d+2n: p+3n = 30%: 54%: 16%, (4.5) 

which is in good agreement with the experimental ratio 
of tritons to all captures of 1/3. 

In addition, the deuteron and proton momenta 
spectra were transformed to range spectra by use of the 
range-energy relations in hydrogen; in Fig. 5, these 
range spectra are added and compared with the experi­
mental range spectrum. The experimental and theo­
retical spectra appear to be in fair agreement. 

The calculated ratio of captures in the triton mode to 
all captures does not depend very sensitively upon the 
assumed rms radius i?3 of the nucleon distribution in 
H8. For example, an increase in R% from 1.65 F to 1.70 F 
causes a 10% decrease in the capture rate of the triton 
mode, and a decrease of i?3 to 1.60 F causes a 10% in­
crease in the capture rate of this mode. However, the 

Jand | g r | 2 in (3.5), (3.9), and (3.15), isxio1 

Momentum in MeV/c 

100 200 300 

FIG. 4. Proton mo­
mentum spectrum, esti­
mated as discussed in 
Sec. 3. 

.4 .8 1.2 1.6 
Momentum in fermi" 

ratio of the capture rate of the triton mode to all cap­
tures changes by only 2 % : for #3=1.70 F, this ratio 
changes from 22% to 20%, and for Rz= 1.60 F, the ratio 
becomes 24%. 
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This ratio is also very insensitive to the ratio of 
amplitudes go~/gi~=% (if it is assumed that the ampli­
tudes are relatively positive). In fact, 

Wt 9.68(1+*)2 

Wt+Wd+WP 50.2x2+SS.9x+65.S 
(4.6) 

The value of this ratio is 15% for x = 0 ; 22% for x = 1; 
and 19% for x=oo . The ratio obtains its maximum 
value of 2 3 % at x—1.7. All of these values agree fairly 
well with experiment. Thus, it is not possible at present 
to determine the ratio of the amplitudes from the ex­
perimental information of pion capture. 

As it was pointed out in Sec. 2, cross terms in go~*gi~ 
appear in the capture rates, even though go- and g{~ are 
amplitudes for transitions of different total angular 
momentum in the "free" capture ir+N+N —•» N+N. 
Although the cross term is most important in the triton 
mode, it is by no means negligible even for the sum of 
capture rates over all modes. Since these cross terms are 
due in large part to the exclusion principle, it appears 
that neglect of the exclusion principle is a rather poor 
approximation, at least in the case of very light nuclei, 
where the momentum of the bystander recoil nucleons 
is of the same order of magnitude as that of the partici­
pating nucleons. Brueckner, Serber, and Watson3 calcu­
lated the total capture rate of pions by using a partial 
closure approximation, in which the final states of the 
bystander nucleons were summed, using the closure 
theorem. In order to use this method, one must neglect 
exchange effects between the participating nucleons and 
the bystanders, and so it would seem that the results of 
this approximation should be applied with some 
caution.15 

I t should be noted that although the ratios of the 
capture rates in the three modes are not very different 
from those given by Petschek, the results of this paper 
were obtained with the use of a He4 wave function which 
did not differ significantly from that of Clark and 
Ruddlesden. The average kinetic energy of the He4 wave 
function which was used is only 52 MeV, compared 
with 48 MeV for the wave function of Clark and 
Ruddlesden, and 130 MeV for the Petschek wave 
function. 

At first sight the large ratio of the triton mode is 
rather puzzling in view of the low kinetic energy of the 
nucleons in the He4 wave function which was used. I t is, 
of course, a consequence of the requirement that the 
two nucleons responsible for the pion capture are 
correlated. This requirement, which was expressed as a 

15 The use of the closure approximation does not always necessi­
tate the neglect of the Pauli principle. In the cases of muon 
capture and hypernuclear decay, the final state contains a neutrino 
or a pion in addition to nucleons; then the closure theorem may be 
used to sum over the entire nucleonic part of the final state, and 
exchange effects may be taken into account with respect to the 
nucleons. See, for example, R. H. Dalitz, Phys. Rev. 112, 605 
(1958) for a discussion of the use of the closure approximation in 
hypernuclear decay. 

5 function in configuration space—5(xi—x2)—becomes, 
in momentum space 5(q+Pi+p2—Pi'—P2O where pi, 
p2(pi/,p2/) are the momenta of the participating initial 
(final) nucleons, and q is the pion momentum. This 

r ~ < 1 • n i ' 1 1 1 « 1 ' 1 • 1 ' 1 ' 1 ' 

- Protons + Deuterons 

- Deuterons 

-Protons 

Ik^iDJlJlLldafaAgflsH^ 
30 40 50 60 70 80 90 100 110 

Range in mm 

FIG. 5. Proton and deuteron range spectra; sum of these spectra; 
and histogram of events observed by Schiff, Hildebrand, and 
Giese (see reference 1). The total range spectrum is normalized to 
the number of events in the histogram. The experimental peak at 
28 mm is due to the triton mode, which does not appear in the 
calculated curves. 

condition is far less stringent than the condition 
which occurs in the absence of correlation, namely, 
5(q+Pi~Pi')5(p2—P27)- As a result of this latter condi­
tion, if /(pi) is the probability that a nucleon in the He4 

nucleus have momentum pi, then the rate for the triton 
mode is proportional to / ( p / ) , where p / is the momen­
tum of the free neutron (when the pion is absorbed from 
rest). Thus, if the He4 wave function does not contain 
high momenta components, the rate for the triton mode 
is proportionately small. However the less stringent 
condition in the case of two-nucleon capture can be 
satisfied by low momenta components of the He4 wave 
function, e.g., | pi | = | px ' | — [ p21 — | p2 ' | . 

The results of this paper are in complete disagreement 
with the qualitative arguments of Ammiraju and 
Biswas,4 who concluded, on the basis of the two-nucleon 
capture model, that the deuteron and triton modes 
should be exceedingly rare. This difference between our 
results stems from their implicit assumption that the 
two-nucleon capture model implies that two fast nu­
cleons must be ejected from the nucleus; the probability 
that one of these nucleons would then "stick" to the 
residual nucleus would be very small indeed, and fur­
thermore, the fast nucleon would impart an extremely 
high excitation energy to the residual nucleus. However, 
the point of the two-nucleon capture model is not so 
much that the available momentum is shared by two 
nucleons, but that the capture of a pion proceeds pri­
marily in the presence of two correlated nucleons. In 
fact, as was seen above, the pion, which is absorbed 
from rest, does not impart any momentum at all to the 
nucleons; the transition probability to a state of 
nucleons of given momenta is proportional to the 
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probability that this distribution of momenta already APPENDIX A. DISCUSSION OF INTEGRALS 
exists within the nucleus. Thus, there is no reason to U S E D I N CALCULATIONS 
believe a priori that the two-nucleon capture model j n this Appendix the integrals which appear in the 
necessitates two fast nucleons in the final state. evaluation of the matrix elements and in the integrations 

over phase space will be discussed. 
ACKNOWLEDGMENT i?- * - +u A * \ •* +u t <.• a i\ • 

First, in the mode t+n, if the wave function (3.3) is 
I t is a pleasure to thank Professor R. H. Dalitz for substituted in the expression for the matrix element 

suggesting this topic, and for many helpful discussions. (2.12), the result is 

j2<=K3'=K4'=0, 

J3 = —J 4 = J\2 

^ F m ^ W ^ / ^ (Al) 

X e x p { - | A [ 2 ( x 1 - x 2 ) 2 + 2 ( x 2 - x 3 ) 2 + ^ 

'Xexp[—iq-i (xi+x 2 +x 3 ) —ip-x2].. 
Using the transformation: 

r=Jx 2 —J(xi+x 3 ) , 

s = x i - x 3 , (A2) 

t=|-(x1+x8), 
and integrating over the variable t, the expression for J3

f simplifies to 

^ p p F w , ) - 1 ' ^ ^ ^ ^ (A3) 

where the pion wave function was replaced by its value at the origin, as discussed in the text. The phase space 
integrals for this mode are carried out completely by the use of the 5 functions. 

In the mode d-{-2ny wThen the wave function (3.6) is substituted in (2.12), the result is 

J 2
d = K / = (mJ-WNaV-1 / <Px*Px*Px8 0 . ( i x 2 - i [ X l + x 3 ] ) 

X B ( p 2 - J q ) 0 d ( | x i — x 2 | ) - ^ ( x 2 — x i ) < ^ / ( | x i ~ x 2 | ) / | x i - x 2 | ] 

X e x p { - i X [ 2 ( x i - x 2 ) 2 + 2 ( x 2 - x 3 ) 2 + ( x 1 - x 3 ) 2 ] } e x p { - i [ p r x 3 + p 2 - x 2 + q 4 ( x 1 + 

J4d(pi ,P2)=-J2
d(p2 ,Pi)=~K2

d(p1 ,p2) , (A4) 

J 3
d = (m7r)-^NaV~1Up1-p2) I *xnPx2*x«*, ( Jx 2 - i [x i+X8])*d( |x i -x 8 | ) 

X e x p { - J \ [ 2 ( x 1 - x 2 ) 2 + 2 ( x 2 - x 3 ) 2 + ( x 1 - x 3 ) 2 ] } e x p { - C ( P i + p 2 ) - x 2 + q 4 ( x 1 + x 3 ) ] } , 
K3<*=0. 

Using the transformation (A2) and integrating over the variable t results in the simplified expression 

hd= (^)-1/247V^7r(0)F-1(27r)35(p1+p2+q) / * ^ r ^ s [ ( p 2 - k ) ^ ( | 2 r - | s | ) - ^ 2 r - | s ) V ( | 2 r - J s | ) / | 2 r - | s | ] 

Xexp{-A(8r 2 +* 2 ) -C2r - ( p 2 + k ) - * s - ( p i - J q ) ] } . (AS) 
Introducing the new variables 

R = 2 r ~ J s , (o= J(4H-2s) , (A6) 

and integrating over the variable to, (A5) becomes 

^QK^J-^w^o^-W (A7) 
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where Q= | (p2—|q) and 

J(Q)= fd*R Z3<t>d(R)--iQ'R<l>d'(R)/Q*R-] e x p [ - f X £ 2 - * Q . R ] . (A8) 

Integration of J (Q) over angles, and integration of the 4>d (R) term by parts, results in 

The function J(Q) was then evaluated numerically. 
The transformation of variables (A2) was also used to simplify Js**. The result is 

hd= (w,)-1"iV r^,(0)F-1 |(Pi-P2)(27r)»8(p1+P2+q)(x/2X)3« e x p [ - ? V 8 X ] f d?R<t>d(R) exp[-Xi? 2] . (A10) 

The differential capture rate then becomes 

^ d =CiV a V. 2 (0 ) / ^F ] (2T) 4 6(p 1 +p2+q)5 (A d - ( ^ 1
2 +^2 2 +^ 2 ) / 2 W ) [F / (2x ) 3 ]Wp 1 ^p 2 r f 3 q 

X{(7x2K2+J2
2Q2)( |g„-12+31gr 12+2 R e g 0 - * g r ) + 2 ( K - Q ) I M \ « < T 1 2 - Igx~12+2 Reg<r*gr) 

+ J ( p i - P 2 ) 2 / 3
2 k o - | 2 + 2 R e g o - * g r [ ( p 1 - P 2 ) - ( / i K - / 2 Q ) ] 7 8 } , (Al l ) 

where Ad= 112.4 MeV is the energy release of this reaction; 

K = | ( p i - | q ) ; 7 i = (2x/3X)3'2 exp( -^ 2 / 6X)J ( i i : ) ; h= (2V3X)3'2 exp(-pS/6\)J(Q); 
and 

J 3 = 2 ( T T / 2 X ) 3 / 2 exp(-g2/8X) fdWMR) exp[-Xi? 2] . 

The energy spectrum of the deuteron is found by integrating this expression over the neutron momenta pi and 
P2. The functions of the deuteron momentum Wi which appear in (3.8) are the following: 

TF1(?) = 2?
2(2V3X)3[iV«V i r

2(0)F2/w.(2^]/ ' j3p1rf3p2S(p1+p2+q) 

XS(Ad- W+vi+lf)/2m)[_KJ(K)J exp( -#»/3X) 

= 9g(27r/3X)3[mAra
207r2(o)F2/W7r(27r)3] exp(-mAV2A) / K[KJ(K) exp(3Z 2 / 4X) ] 2 ^ , (A12) 

J L_ 
where 

L±=Ji\q±(niAd-iq*r2\. 

The right-hand side of (A 12) was found by using the 5 functions to integrate over p2 and over the angle between K 
and q. The integral was evaluated numerically using the tabulated values of J(K). 

W2(q)^2q^2T/3\yiNJ<l>^(0)V2/mT(2TY'] /"<Pp*Pp2 5 ( P l + p 2 + q ) 

X 5 ( A d - {p^+pi+^)/2m)Y,^J(K)J{Q) e x p [ - (£ i 2 +^ 2
2 ) /6 \ ] 

= (2/9)(27r/3\yimNa^
2(0)V2/mlr(2Ty2 exp(-mAd/3\)q2Qq2-mAd)(mAd--^)^ 

Xexp(^2/12X) f d(cos6)J[i(A+B cosfl)1 /2]/^ C 4 - £ cos*)1'2], (A13) 
Jo 

where 
A = mAd+^q2 and B=2q(mAd-iq

2)1/2. 

The right-hand side of (A13) was found by transforming to the new variables u = | ( K + Q ) and v = | ( K — Q); and 
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then using the 5 functions to integrate over u and the magnitude of v. The values of the function / at the points 
(AzLB cos0) were found by interpolation from the tabulated values of J(K). 

TF3(g) = 2g2(x/2X)3[iVaV.2(0)FVmx(2T)4]r fd^R<j>d(R) exp(-Xi?2)~| 

X f<Ppid?V2 S(pi+p2+q)S(Ad- (pi2+p2
2+k2)/2»0(Pi-p2)2 exp[-?V4X] 

= {irWlmN^WVymxil^tfimAa-iq*)™ &$[-$/&$ j(PR 4>a(R) exp(-Xi?2)l, (A14) 

Wi(q) = 4qHw/\yiNa^(fi)V'/3Wm,(2T)4 f(PR<t>„(R) exp(-X£2)l 

X f <Pp*?P* 5(p1+p2+q)5(A l j- (pi2+p2
2+k2)/2^)K- (Vl-V.2)J(K) exp[-?2/8X-^2

2/6X] 

= (12)1'2 ( T T / X ) 3 [ > ^ « V (0) V*/mv (2,r)3] [d*R 4>d{R) exp(-X2P)lj exp [ - (wA,j+§g2)/4X] 

i L+ 

X / dK [_KJ(K) exp(3K2/4X)~](±niAd-±q2+3K2). (A15) 

The right-hand side of (A15) was found [as in the case of (A12)] by using the b functions to integrate over p2 and 
over the angle between K and q. 

In the mode p+3n, the calculation was first carried out for noninteracting final-state particles. In that case, 
when the plane wave function (3.10) was substituted in (2.12) the result was 

J / = [tfa*,(0)/2f*WF»](2TT)35(Z Pi)(*y2X*)wJ,*, 

Ki'=LNjM/2m™V*}(2irft<ZviXil*/2)W*Jil, 

where (jkl) is a cyclic permutation of (234) and 

J « = (Pt-p0 exp{-[2(pfc+pz)2+(pw-pn)2]/16X}, (A17) 

and (klmn) is any permutation of (1234). 

The differential capture rate for this mode is then found to be 

dWp(iree particles) 

= ( 2 x W E P i)5(A- (Z pW2»)[tf«W(0)/«,P](*V2A*)» R [ F ( P ^ / ( 2 T ) « 3 

X[(2|g0- |2+kr|2)(J232+J242+J342)+kr|^Jl22+Jl32+Jl42^ 

- (| gr 12- 4 Reg<rV~) (J23 • J24+J32 • J34+J42 • J43)+(kr 12+2 Re#rV0 

X(J21'J23+J21'J24+J31* J32 + J31'J34+J41'J42 + J41* J43)], (A18) 

where A = 109.9 MeV is the energy release in this reaction. 
jTThe proton momentum spectrum for free particles in the final state was found by integrating (A18) over the 
neutron momenta P2, P3, and p4. Because of the symmetric way irTwhich the neutron momenta appear in the 
integrals, there are only five different terms appearing in the momentum spectrum. These are the functions V i 
and V/ discussed in Sec. 3. These functions are as follows: 

V1(p1) = api*[jkMY, Py)«(A- (E /»//2^))^p2^p3^p4 

^4S(3)^2mpM exp(-^1
2/3X)(47r)27?6 J x2(l-x2f12 exp(-3R2x2/2X)dx, 

Jo 
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where 

R=R(pL)=(lmA-2pl*/9)lf2; a-[2^aV^2(0)F/mT(27r)7](7r2/2X2)3 and k, &1, 

V2(p1) = ap1'fja
tiHZ py)5(A- (E ^2/2m))^p2^p3^P4 

= 24(3)1'2w£1
2a exp[(2^i2/9-imA)/X](47r)2(X/^1)^5 f x^l-x2)^2 exp(R2x2/2\) 

Jo 

X{(£pix/3R) cosh(2p1Rx/S\)+lx2+(4:p1
2/9-2X)/R22 sinh(2p1Rx/3\)}dxJ 

VSip^aptfjii-JitftZ p y )«(A- ( E ^ / /2m) )^p 2 ^p 3 ^p4 , 
where i, I, k^l. 
Vr/(#i) = 36(3)1/2w#i^ e x p [ - (3i?2/8+^i2/3)/X](47r)2^6 /" x 2 ( l -4x 2 /3 ) ( l~x 2 ) 1 / 2 e x p ( - 3 £ V / 4 X ) ^ , 

Jo 

V2
,(pl)-=apl

2 f J i r J i fcS(E Py)«(A- ( E £//2m))<Pp*Pp*PpA 

= 48(3)1%^1
2a exp[(5^i2/36-3wA/8)/X](47r)2(X/^i)ie5 f ^ ( l - a 2 ) 1 ' 2 e x p ( - # V / 4 X ) 

X{(2^ix/3i^) c o s h ( ^ 1 ^ / 3 X ) + [ x 2 - f + ( 4 ^ i 2 / 9 ~ 2 X ) / ^ 2 ] s i n h ^ x / ^ X ) } ^ 

Vzf(p1) = ap1
2fju^kMZ Py)CA~ ( E ^ 2 /2m)]^p 2 ^p 3 J 3 p 4 . 

(A19) 

7' = \v{dpx= \VUpi= \VUpi. 

I t will be noticed that because of symmetry In Fig. 2, it is this approximated function, Vz, which is 

/

r shown. 

y1dp1= I V2dpi, I n making the correction for interacting bystanders, 
J as was discussed in Sec. 3, the relative wave function of 

(A20) the bystanders in the matrix element was replaced by an 
interaction wave function. This has the effect of re­
placing the factor exp[— (pm— £n)2/16X] in Jki by 

The simplified forms of Vi, Vi, V2, and V4 were ob- ,. 
tained by using the 3-dimensional 5 function to integrate (X/T)Z/2 / exp(—Xr2)fp(r)dzr=I(p). (A23) 
over p4, say, and then using the transformation of J 
variables: 

£—if™ _L« _L9« /T\. -v— fn r%\ f \ou The direct terms in the total capture rate for this case 
^~2VP2+p3"t-ipl/^, 17-IP2 — P3j. . (AilJ . ^ 

were then relatively simple to evaluate: 
The remaining 5 function was then used to integrate 
over the magnitude of rj; and an added integration was /. 
carried out over the angle between pi and £. The re- V —>aw21/2(47r)2 / p&I2(p)p2dp 
maining integration (which is essentially over the mag- J 
nitude of £) was then carried out numerically. 

The integral Vz could not, however, be simplified in f1 

such a manner. Although it was possible to reduce it to X / X A 1 — XJ 2 exp(—p2x2/4X)dx, (A24) 
a single integral, the resulting integrand and its limits of 
integration were of a quite complicated nature, and it 2—9/ A — ^ 
was felt that it could be estimated sufficiently well by _« p 7~ \.~ , £ '' £ ^ . . A , - , , 

,. 1 0 . T . , . *̂  , J The simplified form of this integral was found by 
an approximation procedure. Since Vz is a cross term • 1̂ ^ <• , . , , J 

, , . u / ̂ \ • A 4. u / * \ using the transformation of variables: 
between capture by a {pp) pair and capture by a ypn) & 

pair, it was approximated by p = J < p . - p . ) , p '=MP*-P<) , , A _ . 
W > ~ ^ > k=(Pm+P,), * - < p 4 + P l ) , ( A 2 5 ) 

^ ' and using the 5 functions to integrate over k' and the 
XV\(p)V\(p)~]l,2dp magnitude of p'. The x integration which remains is 

essentially over the magnitude of k. / 

file:///VUpi
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APPENDIX B. EVALUATION OF g0~ AND gr 

The amplitudes g0~ and g{~ were evaluated by calcu­
lating the cross sections of the inverse production 
reactions 

(a) p+p->7TQ+p+p, 

(b) p+p—>Tr++p+n, 

and comparing the calculated values with the experi­
mental cross sections. In order to do this, the effective 
Hamiltonian which describes the production reactions 
must be determined. Part of this Hamiltonian has 
already been given by (2.1), which, of course, describes 
s-state pion production with the nucleonic system 
undergoing S—+P transitions. Since there are two 
identical protons in the initial state, the channel which 
is described by (2.1) is ^So —> ZPQ, SO that only the gf 
term contributes to this part of the cross section. 
Stallwood et a/.16 have fitted the experimental cross 
section to a power series in the maximum possible pion 
momentum 77. The cross section of the :5o —> ZPQ channel 
is proportional to 77s, but the calculated value cannot be 
compared directly with the T?6 term in the experimental 
cross section, because the 1D2-^

ZP2 transition also 
contributes to this term. In addition, the experimental 
value of the rj6 term is ambiguous, even with respect to 
sign. Therefore the matrix (2.1) cannot be used at 
present to deduce the values of the amplitudes g<r and 
gi~ directly from a knowledge of the production cross 
sections. Thus, it is necessary to find the terms which 
describe other production channels, in particular the 
P —> S nucleonic transitions. 

These terms in the effective Hamiltonian were found 
by noting that 

X e f f ^ T & W r - 1 , (B2) 

where T is the time-reversal operator. This relationship 
may be proved by recalling that 

1 

E-Ho+ie 

1 1 
+ V V V+• • •, (B3) 

E-Ho+ie E-Ho+ie 

from which (B2) follows immediately if V is invariant 
under time reversal. 

Therefore, the effective Hamiltonian must contain a 
term which is the time-reversed Hermitian conjugate of 
(2.1). Since the field operators transform under time 
reversal as 

T T 

<£—>7?:r0, *p—>i<ryr)Tfip, (B4) 

where TJT, IJT are phase factors of amplitude 1, it is 
found that the time-reversed Hermitian conjugate of 

16 R. A. Stallwood, R. B. Sutton, T. H. Fields, J. G. Fox, and 
J. A. Kane, Phys. Rev. 109, 1716 (1958). 

(2.1) is given by 

/ (Pxi&Xi VT^[}PNK^NK^2)^T^N(XI)\1/N(X2)']J (B5) 

where 

^ r t=Zd=Cgo ± J ( l± i > i 2 T ) i ( ^ i - -^ ) -# t J (a r 1 +a , ) -k 

+ 2 i ± H * i + * 2 W t j ( i ± i V ) 
X§(<FI—cr2)-k]5(xi—x2), 

where k is now the relative momentum of the two initial 
state nucleons. 

I t is clear that (B5) refers to P —> S nucleonic transi­
tions, with pion production in the s state; the go~ term 
describes S= 1 —> 5 = 1 isospin-flip nucleonic transitions, 
and the gr~ term describes / = 1 —> / = 1 spin-flip transi­
tions. I t was therefore possible to determine gf by 
using (B5) to calculate the cross section of reaction 
(Bla), p+p -> ir°+p+p in the 3P 0 -» x5o channel. This 
part of the total cross section, which is proportional to 
rj2, was equated to the r)2 term in the experimental cross 
section.17 In order to evaluate go-, it is of course neces­
sary to consider an isospin flip transition. Such a reac­
tion is conveniently available, namely, 

p+p->ir++d. (Bib') 

Crawford and Stevenson17 have fitted the experimental 
cross section of this reaction to a power series in the pion 
momentum rjD. The part of the cross section due to the 
3Pi —> zSi transition is proportional to rjD. This part was 
calculated by using (B5), and g0~ was found by equating 
the calculated expression to the TJD term in the experi­
mental cross section. 

The evaluation of the matrix elements of the product 
tion reactions was carried out in an analogous fashion to 
the calculations of Sec. 2. The wave function used for 
the initial state of two fast protons was an antisym-
metrized plane wave function 

lMl ,2 )= (2^V)-1lexp({kvx1+ik2^x2)Xi(l12) 

— exp(tk2-xi+iki-x2)x*(2,l)]> (B 6) 

where x*(l>2) is an arbitrary spin wave function. In the 
final state, interactions between the nucleons cannot, of 
course, be neglected, because in order to obtain the 
values of the amplitudes corresponding to absorption of 
pions from rest, the production reactions must be con­
sidered at energies close to threshold. Therefore, even in 
the TT+Jrp-\-p final state, the ^ o potential well must be 
taken into account because of the low energies of the 

17 F. S. Crawford and M. L. Stevenson, Phys; Rev. 97, 1305 
(1955). The results of this paper are consistent with the observa­
tions of R. Durbin, H. Loar, and J. Steinberger, ibid. 84, 581 
(1951); H. L. Stadler, ibid. 96, 496 (1954); M. G. Mescerjakov, 
B. S. Neganov, N. P. Bogacev, and V. M. Siderov, Doklady Akad. 
Nauk S.S.S.R. 100, 677 (1955); M. G. Mescerjakov, N. P. 
Bogacev, and B. S. Neganov, Suppl. Nuovo Cimento 3,120 (1956); 
and T. H. Fields, J. G. Fox, J. A. Kane, R. A. Stallwood, and 
R. B-. Sutton, Phys. Rev. 109, 1704 (1958). 
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protons. The final-state wave functions used were 

^ / = 7 - i 0 ( | x 1 - x 2 | ) exppQ- | (x i+x 2 )+ iq -Xi ] 

X i ( l±P i2* )x / ( l , 2 ) , (B7) 

where <j>(r) is the relative wave function of the two 
nucleons; Q is the c m . momentum of the nucleons; q is 
the pion momentum; and the db sign corresponds to the 
triplet or singlet spin state of the nucleons. 

I t was found that for the ZPQ~-^SO channel of re­
action (Bla), p+p-tifi+p+p, 

i El^Ceff | 2 = |g r | 2 (^^ 3 ) - 1 (27 r ) 3 5(q+Q) 

Xtt|*(0)| (B8a) 

The value of the relative wave function of the final-
state protons <t> (r) at the origin was found by the solu­
tion of the Schrodinger equation in a xSo square-well 
potential, with the parameters given in footnote 14.18 

The result is 

|«(o)|y»p= 
d*p p2+mV8 

(2TT)3 p2+mVs cosZb$(p
2+fnV8)

1!2'] 

~mVsdp/{2<K2), (B9a) 

where p is the internal momentum of the p—p system, 
and dnp is the number of states with momentum be­
tween p and p+dp. 

For the sPi —>3Si transition of reaction (Bib') 
p+p —> 7r++d, it was found that 

iE|Xeff |2=2Uo-|2(mTF3)~1(27r)3 

XS(q+Q)k2|<^(0) |2 . (B8b) 

The deuteron wave function at the origin was found in a 
manner analogous to the p—p wave function, although 
this means that g0~ may not be determined as accu­
rately as it would have been had a better wave function 
been used. However, the value of the ratio | go" | V | gi~ |2 

will probably be more accurate because the same type of 
approximation is used in both cases. If B is the deuteron 
binding energy, then 

| ^ ( 0 ) | 2 = {2ir)-KniB)^m{Vt--B)[\+B/(Vt-B)~] 

Xl1L+bt(mB)W-B/(Vt-B)']-\ (B9b) 

The cross section for the 3 i V 
p+p —* ir°+p+p was found to be 

x5o transition of 

|g1- |2F sw%7 rV/32(2)1 /V2 , (BIO) 

where 77, the maximum available pion momentum, is 
given in units of the pion mass; and the cross section of 
the 3Pi —» 85i transition of p+p —* ir++d is 

\gQ~\^Vt-B)m"mT(m^By^2wT1L^+B/(Vt-B)2 

•X[ l+6i ( f»5) 1 / 2 -S / (7 | - J5)2- 1 i ?D, (Bl l ) 
18 Coulomb forces were neglected, since we are interested in the 

value of the wave function close to the origin, where the Coulomb 
interaction may be treated as a small perturbation. 

where rjD, the pion momentum, is again given in units of 
the pion mass. 

The experimental value of the coefficient of the rf 
term in the p+p—>w°+p+p cross section is 25 jjb to 
within about 50%1 6; and the coefficient of the rjn term 
in the p+p—>ir++d experimental cross section is 
138 jub.17 Using these values it was found that 

]goi 2 =0.32 F8, | s f |2 = 0.29 F8 . (B12) 

I t is clear that the amplitudes are equal in absolute 
value within experimental accuracy. 

APPENDIX C 

In Sec. 4, it was seen that the amplitudes go" and g r 
were equal within experimental accuracy. In this Ap­
pendix it will be shown that these amplitudes are pre­
dicted to be equal, within the approximation that only 
corrections due to the exchange of £-wave pions be­
tween the nucleons are included. The limitations of this 
approximation will be discussed briefly at the end of this 
Appendix. 

The basic interaction between pions and nucleons is 
of the form a-Vt^. In order to maintain Galilean 
invariance, an additional term of the form or* (Pi+P/)^ • 0 
(where Pi and p / are the initial and final momenta of the 
nucleon) must be present in the interaction. I t is this 
latter term which is responsible for s-wave pion ab­
sorption (emission). 

Consider, first, the exchange of £-wave pions between 
the nucleons. In any order of perturbation theory there 
will be two closely related matrix elements corre­
sponding to pion absorption by two nucleons. In Fig. 6, 
(a) will correspond to a matrix element of the form 

Mi* Zui(pi)<rnTj%- - -<TipTjv<T' ( P , + P H - I ) * " ^ 
X<Tiv+lTjv+1- • '(Tinrinu(pi)2 

Xlu^(p2)crklTh' "(TknTlnu(p2)~], (C I ) 

and (b) to a matrix element of the form 

I f 2 a Z^(pi)<TklTh' • '(TknTlnu(p2)'] 

XZ^KP^^HTJY ' '<TivTjy<T 

' ( p / + P H - l , ) * # ^iy+lTjv+l' ' 'VinTJnUiP*)!' ( C 2 ) 

The set of indices {kv • -kn} is a permutation of the set 
{iv ' -in} and the set {h- • -ln} is the same permutation 
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FIG. 6. Diagrams for pion absorption. 
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of {ji'\'jn}- As an example, for the simple ladder 
diagram (c) this permutation is the identity, and 

X (erx • <r2)
 n~v (*i • *2) " (* • 0) O r T2) " ^ 

The sum of momenta py+p^+i is equal to 2pi'—q 
~~X) <L where the q / s are momenta of internal pion 
lines. The terms in the matrix element proportional to 
a - qy will vanish after integration over the internal pion 
momenta; and since by our assumption q = 0 (absorp­
tion from rest) Mi will be proportional to p / ; and 
similarly M% will be proportional to p / . In the c m . 
system p / = — p2/ = i ( P i / ~ P2/)==k- I t can easily be seen 
that Mi is the same function of (cijO^crrk) as of 
(*i,*2,*v$). Therefore, the most general form of the 
matrix element Mi is 

Afi=[ i l ( i r i+€r 2 ) .k+5(ai -a- 2 ) .k | (H-i > i2 f f ) . 
+C(«n-<r 2 ) rk* ( l -P 1 2 *) ] 

+ C ( T 1 - T 2 ) - ^ ( 1 - ^ I 2 T ) ] . (C3) 

The matrix element M2 will have the same form, with 
o-i <-> cr2, k <-» —k and TI <-» ̂ 2. Thus 

M 1 +i l f 2 =2^^C(c r 1 +cF 2 ) -k (T 1 -T 2 ) - ^a+ i ) i 2 r ) 
+ Ol+T2)^((71-(T2).ki(l + Pl2^)] 
+ 2^C[(cr1+<r2)-k(T1»^2)-^(l-Pi2

T) 
+ 01+T2)-^((r1-cr2).ki(l-Pi2£r)]. (C4) 

A comparison with (2.3) shows that all diagrams in 
which only ^-wave pions are exchanged between the 
nucleons contribute equally to go~ and gf~ (and also 
contribute equally to g0

+ and gi+). 
In addition to the terms discussed above, the pion-

nucleon interaction contains terms which are quadratic 
in the pion field, of the form 

XoW//OV+XM///*)WX*, (C5) 

where « = ^ is the conjugate pion field. In lowest order 
these terms correspond to diagrams such as (b) of 
Fig. 7. In this case an s-wave pion is exchanged between 
the nucleons. I t can easily be seen that the Xo term will 
give rise to a matrix element whose spin and isospin 
dependence is of the form 

M\0<£ (TI• 0) (<ri• k) — (x2- f) (cr2• k) 

= i[(*i—*2)\*K*i+<r2-k) 
+ O i + ^ 2 ) ^ ( c r i - c r 2 ) - k ] , (C6) 

thus giving equal contributions to go~ and gf~ (and also 
go+ and gi+). The X term will give rise to a matrix 
element whose spin and isospin dependence is of the 

FIG. 7. Lowest or­
der diagrams for pion 
absorption. 

(a) 

form 

(M 

M\ oc (c^-j- cr2) • k i ( T I X T 2 ) • $ 

= (vi+a2) -k(Ti— T 2 ) • ^ 

x [ K i - A 2 0 - i a + ^ i 2 r ) ] . (C7) 

This term contributes only to go^ and not to g ^ at all. 
Thus go~ will not equal gf~ to the extent that the X term 
contributes to the interaction. 

In a semiphenomenological analysis, Woodruff19 cal­
culated the production amplitudes for the process 
p-\-p-^Tr+-\-d close to threshold, taking into account 
diagrams of the type (a) and (b) of Fig. 7. The parame­
ters Xo and X were fitted to the zero-energy s-wave pion-
nucleon scattering data in Born approximation. Al­
though his calculated results agreed with the £-wave 
pion production data to better than 10%, the calculated 
value of the s-wave production amplitude was 60% 
greater than the experimental value. (When the quad­
ratic terms were neglected completely, the calculated 
value of the s-wave production amplitude was one-sixth 
of the experimental value.) If there is a large contribu­
tion from the quadratic s-wave scattering terms, the 
isospin dependent part would give rise to an appreciable 
difference in the values of go~ and gf, contrary to the 
result we have obtained here from the analysis of the 
7r+iV+iV —» N+N process. However, Woodruff's cal­
culation includes only rescattering effects and not the 
corrections arising from the exchange of _£-wave pions 
between the nucleons. 

Note added in proof. While this paper was in press, 
M. V. Bortolani, L. Lendinara, and L. Monari reported 
the results of an experiment on pion absorption by He4 

in a helium bubble chamber [Nuovo Cimento 25, 603 
(1962)]. According to this experiment, the ratio of 
captures in the triton mode (1.1a) to all modes is 
0.22±0.03. This is in excellent agreement with the 
ratio 22% calculated here [cf. Eq. (4.4)]. However, the 
inference drawn by Bortolani et al. that pion absorption 
takes place essentially on the proton-neutron pair is at 
variance with our result on the equality of go- and gi~. 
This is due to certain unjustified assumptions which 
they made. For example, they assumed that the only 
deuterons which are emitted are bystanders; but as a 
result of our calculations, we have seen that there is a 
greater probability that a nucleon bound in the deuteron 
be a participant than that both nucleons be bystanders 
(see Fig. 3). 

19 A. E. Woodruff, Phys. Rev. 117, 1113 (1960). 


